

Agenda

01
Motivation, Problem
& Solution

02Implementation & Experiments

03

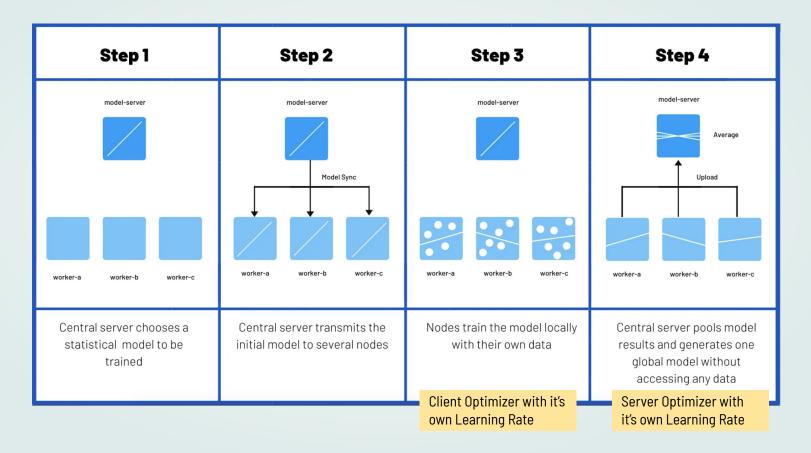
04

Results

Questions

Motivation

Problem


Opportunity for hyperparameter tuning in federated learning is constrained due to the limited number of communication rounds

Solution

Automate hyperparameter tuning! **But how to automate?** We evaluate three strategies for automating or adaptively adjusting hyperparameter tuning for federated learning.

Overview of FL and Client vs Server Optimizers

Implementation - Experiments

03

Experiment 1

FedAvg (Server) + SGD (Client) + 3 Client Learning Rate Schedulers

Experiment 2

FedAvg (Server) + 1 non adaptive and 3 adaptive client optimizers

Experiment 3

FedAvg (Server)+ SGD or Adam (Client) + 3 server learning rate optimizers

Experiment Setup

Model

Simple CNN model with 3 layers

Data Distribution non-IID

Learning Rates

Server Learning Rate = 1 Client Learning Rate = 0.01

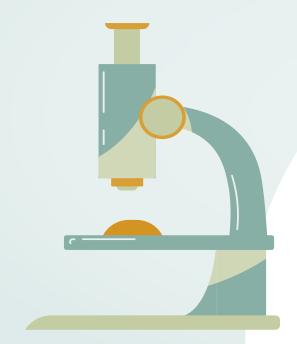
Datasets

MNIST, FMNIST

Epochs

30 communication rounds

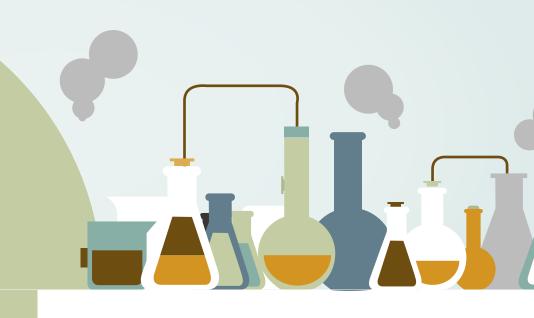
Client


100 clients
10 epochs of local training
for each round

Compare three learning rate schedulers:

- StepLR
 - Reduce the learning rate for some rate every certain epoches
- ReduceLROnPlateau
 - Reduce learning rate when a metric has stopped improving
- CosineAnnealingLR
 - Reduce learning rate every epoches
 - Learning rate is raised back up after a fix number of epochs

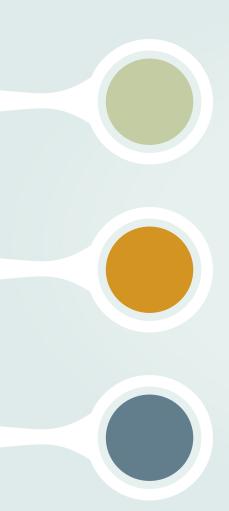
Experiment 1 Results


TABLE I. EXPERIMENT 1 RESULTS

		Experiment 1 Results			
	Dataset	FL Model Configuration	Test Accuracy	Runtime	
	MNIST	FedAvg + SGD + StepLR	88.24%	1035.82s	
	MNIST	FedAvg + SGD + PlateauLR	88.13%	2549.55s	
>	MNIST	FedAvg + SGD + CosineLR	92.76%	2831.43s	
	FMNIST	FedAvg + SGD + StepLR	91.85%	2120.20s	
>	FMNIST	FedAvg + SGD + PlateauLR	94.83%	5949.94s	
	FMNIST	FedAvg + SGD + CosineLR	84.78%	33652.85	

Experiment 2: adaptive client optimizer

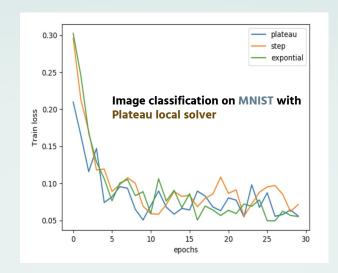
To further improve local update, adaptive optimizers are introduced on the client's side. Compared with SGD, adaptive optimizers enable dynamic adaptation based on gradients instead of predetermined rule.We implemented (1) Adam, (2) Adagrad and (3) Adadelta optimizers as local solvers.

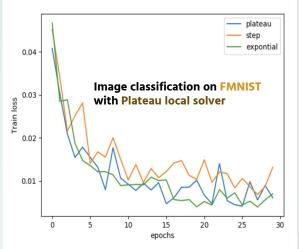


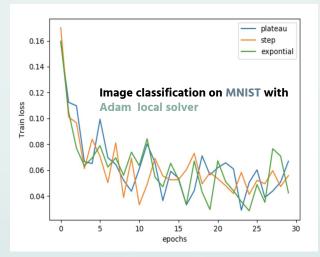
Experiment 2 Results

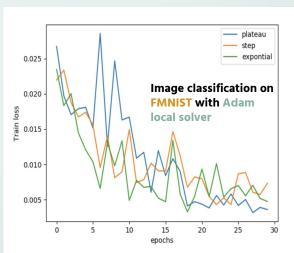
	Experiment 2 Results			
Dataset	FL Model Configuration	Test Accuracy	Runtime	
MNIST	FedAvg + SGD	93.16%	1021.14s	
MNIST	FedAvg + Adam	86.23%	1103.74s	
MNIST	FedAvg + Adadelta	87.63%	1119.67s	
MNIST	FedAvg + Adagrad	78.50%	1068.44s	
FMNIST	FedAvg + SGD	94.70%	2184.44s	
FMNIST	FedAvg + Adam	88.53%	2373.64s	
FMNIST	FedAvg + Adadelta	93.42%	2509.33s	
FMNIST	FedAvg + Adagrad	39.02%	2339.49s	

Experiment 3: Adaptive server aggregation


Pseudo-gradient & SGD


$$x_{t+1} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} x_i^t = x_t - \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} (x_t - x_i^t)$$

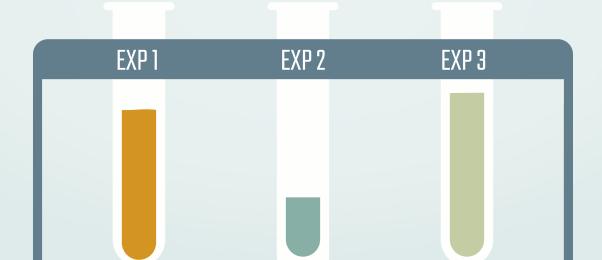

Adaptive global solver


In FedAvg, a vanilla averaging is applied when computing the global model and can be viewed as a pseudo-SGD optimizer. Similarly, to improve the performance, global learning rate decay is expected in the server aggregation step. Particularly, we implemented three global learning rate schedulers: linear decay schedulers, exponential decay scheduler, and loss-based scheduler.

Experiment 3 Results

Results - Key Takeaways

Learning Rate Schedulers


Enable learning rate decay on the client side.

Adaptive Local Solver

Incorporating adaptive optimizers on client side.

Adaptive Server Aggregation

Enable learning rate decay on the server side.

Discussion

- 1) In federated learning for edge devices, do you think it's more important to tune or optimize the client vs server learning rate and why?
- 2) Would the increased privacy of federated learning make you more comfortable using ML products on edge devices (eg. smartphone, smart speaker?)

CONTENTS OF THIS TEMPLATE

Here's what you'll find in this **Slidesgo** template:

- 1. A slide structure based on a newsletter, which you can easily adapt to your needs. For more info on how to edit the template, please visit **Slidesgo School** or read our **FAQs**.
- 2. An assortment of illustrations that are suitable for use in the presentation can be found in the **alternative resources** slide.
- 3. A **thanks** slide, which you must keep so that proper credits for our design are given.
- 4. A **resources** slide, where you'll find links to all the elements used in the template.
- 5. Instructions for use.
- 6. Final slides with:
 - 1. The fonts and colors used in the template.
 - 2. More **infographic resources**, whose size and color can be edited.
 - 3. Sets of **customizable icons** of the following themes: general, business, avatar, creative process, education, help & support, medical, nature, performing arts, SEO & marketing, and teamwork.

You can delete this slide when you're done editing the presentation.

IN DEPTH

You could enter a subtitle here if you need it

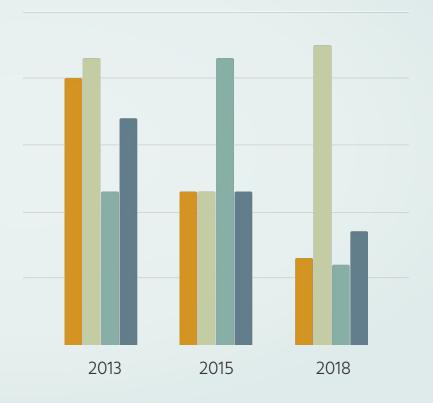
IN DEPTH

MERCURY

Mercury is the closest planet to the Sun

VENUS

Venus has a beautiful name, but it's terribly hot


MARS

Despite being red, Mars is actually a cold place

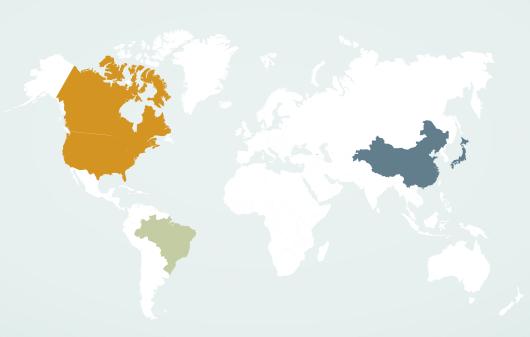
NEPTUNE

Neptune is the farthest planet from the Sun

OUR NUMBERS

	MASS (EARTHS)	GRAVITY (EARTHS)	DIAMETER (EARTHS)
MARS	100	355	370
MERCURY	490	150	890
VENUS	1,000	260	245

OUR LOCATIONS


MARS

Despite being red, Mars is a cold place

SATURN

Saturn is the ringed planet and a gas giant

MERCURY

Mercury is the closest planet to the Sun

WELCOME

You could enter a subtitle here if you need it

WELCOME

HELENA PATTERSON

You can replace the image on the screen with your own

JULIA LARA

You can replace the image on the screen with your own

EVENTS

You could enter a subtitle here if you need it

REVIEW OF PAST EVENTS

Saturn is the ringed one and a gas giant

NEPTUNE

It's the farthest planet from the Sun

03

JUPITER

It's the biggest planet of them all

MERCURY

Mercury is the closest planet to the Sun

VENUS

It's the second planet from the Sun

SNEAK PEEK

You can replace the images on the screen with your own work. Just delete these ones and add yours

THANKS

Do you have any questions?

youremail@freepik.com +91 620 421 838 yourcompany.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

CHEMISTRY ICONS

ALTERNATIVE RESOURCES

RESOURCES

Did you like the resources on this template? Get them for free at our other websites.

PHOTOS

- Female student sitting with book and smiling
- Teenage student sitting at table in classroom
- Modern microscope in laboratory
- Scientist making test in laboratory

VECTORS

- Abstract science background
- Chemistry test tubes
- Flat chemistry background
- Flat chemistry laboratory with flasks
- Flat chemistry background
- Flat chemistry background II

Instructions for use

In order to use this template, you must credit <u>Slidesgo</u> by keeping the Credits slide.

You are allowed to:

- Modify this template.
- Use it for both personal and commercial projects.

You are not allowed to:

- Sublicense, sell or rent any of Slidesgo Content (or a modified version of Slidesgo Content).
- Distribute Slidesgo Content unless it has been expressly authorized by Slidesgo.
- Include Slidesgo Content in an online or offline database or file.
- Offer Slidesgo templates (or modified versions of Slidesgo templates) for download.
- Acquire the copyright of Slidesgo Content.

For more information about editing slides, please read our FAQs or visit Slidesgo School:

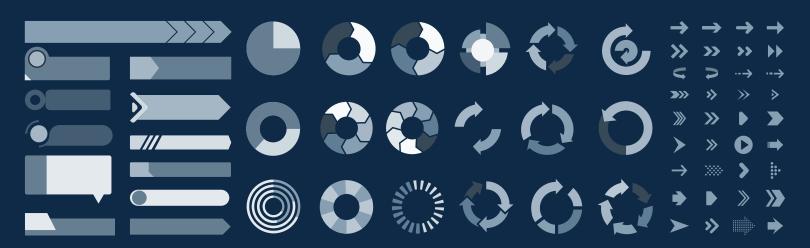
https://slidesgo.com/fags and https://slidesgo.com/slidesgo-school

Fonts & colors used

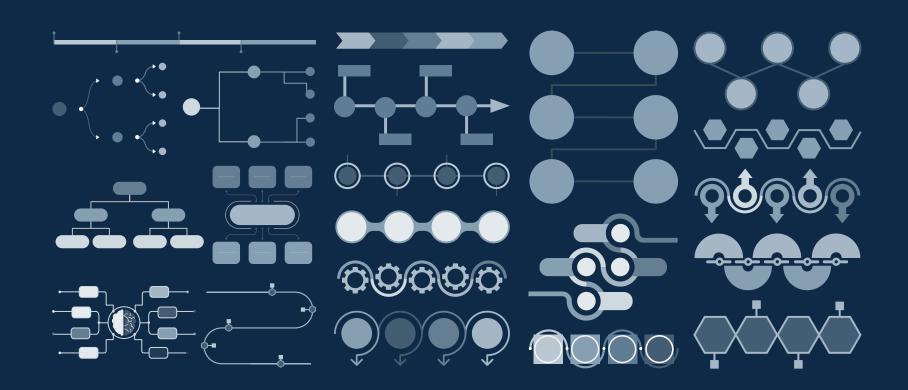
This presentation has been made using the following fonts:

Teko

(https://fonts.google.com/specimen/Teko)


Hind Vadodara

(https://fonts.google.com/specimen/Hind+Vadodara)


#e6f0ef #d49421 #c3cca2 #88afa6 #627e8d

Use our editable graphic resources...

You can easily resize these resources, keeping the quality. To change the color, just ungroup the resource and click on the object you want to change. Then, click on the paint bucket and select the color you want. Don't forget to group the resource again when you're done.

...and our sets of editable icons

You can resize these icons, keeping the quality.

You can change the stroke and fill color; just select the icon and click on the paint bucket/pen. In Google Slides, you can also use Flaticon's extension, allowing you to customize and add even more icons.

Educational Icons

Medical Icons

Business Icons

Teamwork Icons

Help & Support Icons

Avatar Icons

Creative process Icons

Performing Arts Icons

Nature Icons

SEO & Marketing Icons

slidesgo